Friday, December 7, 2018

China Has the Lead in Quantum Encryption

The NY Times reports:
The Race Is On to Protect Data From the Next Leap in Computers. And China Has the Lead.

The world’s leading technology companies, from Google to Alibaba in China, are racing to build the first quantum computer, a machine that would be far more powerful than today’s computers.

This device could break the encryption that protects digital information, putting at risk everything from the billions of dollars spent on e-commerce to national secrets stored in government databases.

An answer? Encryption that relies on the same concepts from the world of physics. Just as some scientists are working on quantum computers, others are working on quantum security techniques that could thwart the code-breaking abilities of these machines of the future.

It is a race with national security implications, and while building quantum computers is still anyone’s game, China has a clear lead in quantum encryption. As it has with other cutting-edge technologies, like artificial intelligence, the Chinese government has made different kinds of quantum research a priority.

“China has a very deliberate strategy to own this technology,” said Duncan Earl, a former researcher at Oak Ridge National Laboratory who is president and chief technology officer of Qubitekk, a company that is exploring quantum encryption. “If we think we can wait five or 10 years before jumping on this technology, it is going to be too late.”
This is ridiculous. I am a quantum computer skeptic, but put that aside. Quantum encryption can be done on a small scale, but it is commercially useless for many reasons. Messages cannot be authenticated. It is slow and cumbersome. It is subject to hardware attacks. It has never worked as well as the models assume. It does not solve any problem that is not already solved in a much better way.
With communications sent by traditional means, eavesdroppers can intercept the data stream at every point along a fiber-optic line. A government could tap that line just about anywhere. Quantum encryption cut the number of vulnerable spots in the Beijing-Shanghai line to just a few dozen across 1,200 miles, Professor Lu said.
No, most data today is sent encrypted. Governments cannot just tap the lines at intermediate points, because they would just get encrypted data.
At places like the University of Chicago, researchers hope to go a step further, exploring what are called quantum repeaters — devices that could extend the range of quantum encryption.
Yes, that is one of the big problems with quantum encryption. Ordinary encryption, as used today, can use cheap routers with no danger of security loss. Quantum encryption needs trusted quantum repeaters everywhere, and no one has invented one yet.

No comments:

Post a Comment