Thursday, May 19, 2022

Susskind Tackles Computers Falling into Black Holes

Physicist Leonard Susskind gave a lecture:
Black Holes and the Quantum-Extended Church-Turing Thesis | Quantum Colloquium

A few years ago three computer scientists named Adam Bouland, Bill Fefferman, and Umesh Vazirani, wrote a paper that promises to radically change the way we think about the interiors of black holes. Inspired by their paper I will explain how black holes threaten the QECTT, and how the properties of horizons rescue the thesis, and eventually make predictions for the complexity of extracting information from behind the black hole horizon. I'll try my best to explain enough about black holes to keep the lecture self contained.

Susskind explains that his last great accomplishment was to convince his colleagues that if two entangled particles fall into two black holes, then they will be connected by a wormhole. See EP = EPR for more.

Now he is excited by the physics of quantum complexity theory. It had long been thought that Turing machines are good models for computation, in that computable functions can be performed by Turing machines, and polynomial time computability corresponds to polynomial time Turing machines. He says this is now believed to be false, because a quantum computer might do something in polynomial time that a Turing machine might require longer time.

Susskind's insight is that a computer falling into a black hole might achieve a higher complexity than what would otherwise be possible. The catch is that it could never communicate its result to anyone.

Update: Susskind claimed that EP=EPR has become accepted wisdom, but Peter Shor says:

One of the problems with It from Qubit is that it’s really quite hard to tell the papers that are nonsense from the ones that aren’t. For example, Maldacena and Susskind’s ER=EPR paper is a speculative idea that has no chance of being correct (but listening to his most recent talk, Susskind hasn’t given up on it). And when you actually corner other people in the area they (or at least some of them) will admit that this paper has virtually no chance of being correct, but for some reason they aren’t willing to say this publicly.

There are undoubtedly other papers in this field which are equally improbable. But it seems to me that any field where you have to be in the cogniscenti to know which papers are the ones worth paying attention to is in deep trouble.

That gets this response:
I wonder on what grounds ER=EPR is supposed to have “no chance” of being correct. There is already the curious parallel of non-traversibility of wormholes, and non-transmission of information via entanglement alone; obtaining both of these limitations from a common origin is exactly the kind of beautiful conceptual connection one expects from a deep correct insight.
So there are two theoretical examples of non-communication, and saying they are the same is a deep insight. I say both are the same as the Easter Bunny. Is that deep also?

I wonder if anyone has published a respectable paper saying that EP=EPR is nonsense. Or if everyone is too polite to say so. Or if physicists think that because the EP=EPR paper was written by two great geniuses, failing to understand it must be a deficiency of their own brain power.

Peter Woit's response:

Probably others have the same problem I have with writing anything publicly about this. The literature is huge and complicated, so it would be a full time job to master it to the point of being sure there is no there there. I’ve been through this before with string theory claims and wasted far too much time on that.
It used to be that leading physicists would explain why the theory makes sense or is good for something.

Monday, May 16, 2022

Praising the Great Paradigm Shifters

Peter Woit declares:
If one tried to pick a single most talented and influential figure of the past 100 years in each of the fields of pure mathematics and of theoretical physics, I’d argue that you should pick Alexander Grothendieck in pure math and Edward Witten in theoretical physics.
Several comments give some good reasons for disagreeing with this assessment.

Grothendieck is almost completely unknown outside Mathematics, as his work was in the abstract foundations of algebraic geometry. As for Witten:

And he [Ed Witten] rarely came to our floor, fourth floor, but here he was, coming and knocking at my door, and then saying, “Have you heard about the revolution?”…

I said, “What revolution?” He said, “The SO(32) revolution.”

Witten convinced everyone of these string "revolutions". This one was a minor technical result in 1984. There is still no known relation to the physical world.

This "revolution" terminology stems from philosoher T. Kuhn, who based it on a study of the "Copernican revolution", where the Earth does revolutions about the Sun. He said that Copernican theory was not measurably better than Ptolemaic (Earth-centered), but was great anyway because it became accepted.

The lesson here is that if you call something a revolution and persuade your colleagues, you can be a great genius without showing any measurable advantages.

Woit credits Witten largely because he was-influential in conning everyone into studying string theory, a big dead end. Dirac, Feynman, Weinberg, and all the other theoretical physicists just advanced the state of the art, and did what others might have done later. Maybe no one would have bothered with string theory, if it were not for a few leaders like Witten.

Thursday, May 5, 2022

Multiverse in the Movies

I usually like science fiction, but it seems that the movies take the most ridiculous science ideas. A few years ago, everyone was doing time travel. Now they are all doing the multiverse. Here are some current movies.

Everything Everywhere All at Once

The plot follows a Chinese-American woman (Yeoh) being audited by the Internal Revenue Service who discovers that she must connect with parallel universe versions of herself to prevent a powerful being from causing the destruction of them all.
Spider-Man: No Way Home
When the spell goes wrong, the multiverse is broken open which allows visitors from alternate realities to enter Parker's universe.
Doctor Strange in the Multiverse of Madness
In the film, Strange and his allies travel into the multiverse to protect a young girl from Wanda Maximoff, who will stop at nothing to take back her own sons at all costs.
Find more at IMDB Multiverse in Movies.

Tuesday, May 3, 2022

Pinker says AAAS is too Leftist

You know Science is getting too politicized when academic leftist criticize the leading science organizations for being to overtly leftist. See Steve Pinker's criticism of AAAS
For precisely these reasons I cannot in good conscience agree to your request to donate money to the AAAS. The Association is currently making these hazards worse, not better.

First, it is astonishing that an association for the advancement of science does not take a scientific approach to public acceptance of scientific conclusions. ...

I will give three examples of how the AAAS appears to be going out of its way to alienate any politician or citizen who is not a strong leftist. ...

As best I can tell, awareness of the hazards of politicization of science among the officers of AAAS and the editors of Science is zero.

He is right about this. Here is the AAAS response:
Thanks for your note. We’re sorry to lose you as a donor, but I disagree with your analysis. We will continue to cover the evidence for and impact of systemic racism. Thanks for your support of AAAS in the past.
In other words, the leftist shift is accelerating.

Update: Scientific publications are already lining up to attack a court opinion:

A leaked draft of a Supreme Court opinion suggests the nation’s highest court is poised to overturn Roe v. Wade, the landmark ruling that guarantees the right to an abortion. The opinion was first reported by Politico. ....

The study found that women denied the procedure were more likely to experience negative health impacts—including worse mental health—than women who received one. The former were also more likely to face worse financial outcomes, including poor credit, debt and bankruptcy. (The study did not include pregnant people who did not identify as women.)

Note that it has to apologize for citing a study of pregnant women that did not include pregnant men.

The leaked opinion is filled with historical and legal fact-finding. It is interesting that all these academic scholars have not found fault with the facts or reasoning. They just disagree with the law being determined by elected representatives.

Saturday, April 30, 2022

Many Worlds is like Superdeterminism

I posted this provocative comment on Scott Aaronson's blog:
MWI fails to resolve the measurement problem, as Fred #14 explains, but the problems are much worse. Scott has explained that superdeterminism is contrary to scientific thinking, and so is MWI, for somewhat different reasons.

Superdeterminism makes randomized controlled experiments impossible, because hidden dependencies control the outputs. MWI also rules out free will, and then makes it impossible to interpret outcomes. If you do an experiment with ten possible outcomes, and see one, you learn nothing because all of the other possibilities occur in parallel universes. MWI might be of some use if it were able to say that some universes were more probable than others, but it cannot do that. So MWI also makes experiments impossible.

MWI does not make any successful predictions, unless you add the Born rule and do Copenhagen in disguise. Just like the superdeterminists, the MWI advocates seems to be willful contrarians who do not actually have a quantitative theory to back up their ideas.

Aaronson says that he is mostly on board with the Many Worlds Interpretation. He says:
I already teach MWI in my undergrad quantum information class, in such a way that according to the poll we give at final exam time, roughly half the students end up as MWI proponents (with the others split among Bohm, Quantum Bayesianism, Penrose-style dynamical collapse theories, agnosticism, and rejection of the whole question as meaningless).
Deutsch is a big believer in quantum computing, and says it would prove many-worlds, as the extra worlds could explain where the magic computation takes place. My view is the contrapositive. I think many-worlds is nonsense, and that makes me skeptical about quantum computing.

I will be interested to see what pushback I get. Surely the MWI believers will say that I am wrong.

Update: Not much response so far. One guy has a link to a paper arguing for the Born rule, but that's all.

A video interview of Deutsch on many-worlds, which he prefers to call the multiverse, was just posted. He claims great importance to the concept, but when asked to quantify the universes, he cannot give a good answer.

Update: Still no serious defense of MWI. Weird. Maybe they only believe in it to the extent that they do not have to defend its inadequacies. Finally, the thread is being hijacked by "Feminist Bitch" who complains that "we get a pseudo-intellectual rationalist-tier rant about whatever’s bumping around Scott’s mind right now." Not enough about her favorite leftist feminist causes. Sigh.

Update: And now Aaronson has been shamed into donating to feminist causes:

I stayed up hours last night reading Alito’s leaked decision in a state of abject terror. I saw how the logic of the decision, consistent and impeccable on its own terms, is one by which the Supreme Court’s five theocrats could now proceed to unravel the whole of modernity.
So the whole of modernity depends on imposing illogical rulings on the people?

Update: Aaronson has closed the thread after detailing how he was bullied as a child. He is annoyed that feminists and others demand special oppression status, while no one has any sympathy for nerds like him.

Thursday, April 28, 2022

Maybe a Monkey Threw the Paradigm-Shifting Ashtray

I mentioned how a famous documentary film maker wrote a book trashing the famous paradigm shift professor.

The professor is now dead, and his archivist published a defense. The filmmaker got the professor's brand of cigarettes wrong. And maybe a monkey threw the ashtray, not the professor. And reports that the professor had multiple monkeys in his office were exaggerated.

I post this to help complete the record.

The real problem with Professor Paradigm Shift is not his ashtray, or even his philosophy, but how his famous book convinced much of academia that science is just a system of following faddish beliefs, with no theory being objectively better than any other.

Tuesday, April 26, 2022

Topological Quantum Computer Progress Retracted

One of the more exciting approaches to quantum computing is the topological quantum computer. This is the approach that Microsoft is betting on. If possible, it would solve some error correction problems.

If possible. Advances in the field keep getting announced, and retracted.

Retraction Watch reports:

A year after retracting a Nature paper claiming to find evidence for the elusive Majorana particle that many hope would have paved the way for a quantum computer, a group of researchers have retracted a second paper on the subject from the same journal.
Scott Aaronson reports:
Last month, Microsoft announced on the web that it had achieved an experimental breakthrough in topological quantum computing: not quite the creation of a topological qubit, but some of the underlying physics required for that. This followed their needing to retract their previous claim of such a breakthrough, due to the criticisms of Sergey Frolov and others. One imagines that they would’ve taken far greater care this time around. Unfortunately, a research paper doesn’t seem to be available yet. Anyone with further details is welcome to chime in.
One imagines. Okay, I can imagine.

Sunday, April 24, 2022

Carroll Attacks Libertarian Free Will

Sean M. Carroll claims that he defends free will, but on his latest podcast, he says that libertarian free will violates the laws of physics, and is therefore impossible.

He says he believes in compatibilist free will, where all our actions are determined by past events, but we have an illusion of making choices.

Here is a recent philosophy paper on free will. It also defends free will only in some contrived sense.

If free will violates the laws of physics, then what law is violated? Where is the scientific paper that made this discovery? Who got the Nobel Prize for this scientific breakthrough that resolved millennia of philosophical arguments?

None of this can be explained, of course. Carroll is just relying on his peculiar prejudices.

He has a few, if you listen to him. The biggest is that he subscribes to many-worlds theory. That really is contrary to a scientific understanding of the world. Just listen to him try to explain how he might be split into an identical copy who is then wiped out by a vacuum decay in a parallel world. And how probabilities have no meaning in many-worlds, but we try to be good Bayesians anyway, and probability is how we like to think of the world. It is all the same as if he lives in an imaginary simulation where anything can happen.

Monday, April 18, 2022

Why Goedel was Important to Mathematics

Jordan Ellenberg is a genius mathematician who wrote this 2005 Slate essay:
Goldstein calls Gödel’s incompleteness theorem “the third leg, together with Heisenberg’s uncertainty principle and Einstein’s relativity, of that tripod of theoretical cataclysms that have been felt to force disturbances deep down in the foundations of the ‘exact sciences.’ “ ...

In his recent New York Times review of Incompleteness, Edward Rothstein wrote that it’s “difficult to overstate the impact of Gödel’s theorem.” But actually, it’s easy to overstate it: Goldstein does it when she likens the impact of Gödel’s incompleteness theorem to that of relativity and quantum mechanics and calls him “the most famous mathematician that you have most likely never heard of.” But what’s most startling about Gödel’s theorem, given its conceptual importance, is not how much it’s changed mathematics, but how little. No theoretical physicist could start a career today without a thorough understanding of Einstein’s and Heisenberg’s contributions. But most pure mathematicians can easily go through life with only a vague acquaintance with Gödel’s work. So far, I’ve done it myself.

He has this backwards. He thinks Einstein invented relativity!

If numbers are real things, independent of our minds, they don’t care whether or not we can define them; we apprehend them through some intuitive faculty whose nature remains a mystery. From this point of view, it’s not at all strange that the mathematics we do today is very much like the mathematics we’d be doing if Gödel had never knocked out the possibility of axiomatic foundations. For Gödel, axiomatic foundations, however useful, were never truly necessary in the first place. His work was revolutionary, yes, but it was a revolution of the most unusual kind: one that abolished the constitution while leaving the material circumstances of the citizens more or less unchanged.
No, Goedel did not knock out the possibility of axiomatic foundations. He showed, more than any other single person, that mathematics could be founded on axioms.

He showed that first order logic was strong enough to prove statements that are true in every model. He showed how set theory axioms could help answer questions like the continuum hypothesis. Before him, we did not know that first-order logic would suffice for math foundations. After him, there was a consensus that ZFC works.

Before ZFC, we did not have rigorous constructions of the real number line, or a good concept of a function. And certainly not manifolds or vector fields or Banach spaces. Mathematicians take these things for granted today, but only because of foundational work done in the early XX century. Logicism did not fail.

It is not true that the axiomatic foundations are not necessary. It was not true for Goedel, and not true for the rest of Mathematics. Perhaps Ellenberg has managed to avoid logical subtleties in his papers, but that is only because others have done the foundational work that he built on.

Another way in which Goedel's work has transformed Math is that he invented computability for his famous theorem. It depends on the axioms being recursively enumerable. This became a core concept for theoretical computer science. It is important for math also. I would say that all pure mathematicians should have a basic understanding of first-order logic, ZFC, and computability.

Others do say similar things about Goedel, such as this 1915 book:

John von Neumann, who was in the audience immediately understood the importance of Gödel's incompleteness theorem. He was at the conference representing Hilbert's proof theory program and recognized that Hilbert's program was over.
Hilbert's program was to axiomatize mathematics. That was not over. It had just gotten started. Only a very narrow and unimportant part of it was over. That is, self-consistency could not be proved, and would not help even if it could be.

Monday, April 11, 2022

New Video on Entanglement

Brian Greene leads a video discusssion on Einstein and the Quantum: Entanglement and Emergence.

Everyone seems to accept that entanglement is the big mystery of quantum mechanics. I do not agree.

The favorite example of entanglement is when two identical particles get emitted from the same source, and then the spin of one is correlated with the spin of the other, even if they are far apart.

This by itself is not so strange, as the same thing happens classically. Because of conservation of linear and angular momentum, a similar classical particle ejection would also yield distant correlations.

Greene would day that the quantum correlations work differently. Okay they do. But then you have to be talking about that difference as being the quantum mystery, because if you just talk about the distant correlation, there is no quantum mystery.

The quantum spins work differently because of the uncertainty principle. The measured spin depends on how the measurement is made. Classical mechanics allows modeling position, momentum, and spin without saying how they are measured.

Okay, yes, that is an important difference, but what does it have to do with entanglement? The entanglement is just a smokescreen added to confuse you.

I did learn one thing. I always thought that the EPR paradox was named after the initials of that 1935 paper. It also stands for Element of Physical Reality. The central claim of that paper is a complete theory must represent every element of physical reality. If a measurement outcome is determined by another distant measurement, then that is such an element, but quantum theory uses wave functions instead for the dynamical theory.

Again, the real mystery here is the uncertainty principle, which implies that the measurement outcome depends on how the measurement is done. The fact that there is a distant correlation would be true about any theory.

Nobody thought that 1935 paper was any big deal until Bell showed in the 1960s that the quantum correlations could be quantitatively distinguished from the classical correlations. He also renamed the elements of physical reality as beables. He wanted to follow Einstein's dream of having a theory based on beables, like classical physics, instead of wave functions. The Bell test experiments proved this to be impossible.

Thursday, April 7, 2022

Recent Postings against Free Will

Here are a couple of recent postings against free will. Sam Harris argues in a podcast that he does not even have the feeling of making free choices.

I think he suffers from a mental disorder.

Physicist Coel Hellier argues Human brains have to be deterministic (though indeterminism would not give us free will anyhow).

It appears to me that his main argument is that no one can give a mechanistic deterministic account of how free will works.

I say that it would not be free will, if that were possible.

I am particularly baffled that any scientist would make this argument. We cannot give a mechanistic deterministic account of how quantum mechanics works. Bell's theorem shows that is impossible. All physicists know this. So why should anyone expect such an explanation of free will?

Mathematician Gil Kalai is a well-known quantum computer skeptic, and a believer in free will. He has a new paper relating these views, Quantum Computers, Predictability, and Free Will. He denies that quantum supremacy has been achieved.

Monday, April 4, 2022

Philosophy of Quantum Mechanics

This new survey is pretty good:
Wallace, David (2022) Philosophy of Quantum Mechanics. [Preprint]

This is a general introduction to and review of the philosophy of quantum mechanics, aimed at readers with a physics background and assuming no prior exposure to philosophy. It is a draft version of an article to appear in the Oxford Research Encyclopedia of Physics.

It is a little too favorable towards many-worlds:
Among physicists, the (more operationalist versions of the) probability-based approach, and the Everett interpretation, are roughly as popular as one an- other, with different sub-communities having different preferences. (The mod- ificatory strategies are much less popular among physicists, although they are probably the most common choice among philosophers of physics.) But more popular than either is the ‘shut-up-and-calculate’ approach [154]: the view that we should not worry about these issues and should get on with applying quan- tum mechanics to concrete problems.

Thursday, March 31, 2022

Quantum Computing is a Paper Tiger

From a new MIT Technology Review paper:
Established applications for quantum computers do exist. The best known is Peter Shor's 1994 theoretical demonstration that a quantum computer can solve the hard problem of finding the prime factors of large numbers exponentially faster than all classical schemes. Prime factorization is at the heart of breaking the universally used RSA-based cryptography, so Shor's factorization scheme immediately attracted the attention of national governments everywhere, leading to considerable quantum-computing research funding. The only problem? Actually making a quantum computer that could do it. That depends on implementing an idea pioneered by Shor and others called quantum-error correction, a process to compensate for the fact that quantum states disappear quickly because of environmental noise (a phenomenon called "decoherence"). In 1994, scientists thought that such error correction would be easy because physics allows it. But in practice, it is extremely difficult.

The most advanced quantum computers today have dozens of decohering (or "noisy") physical qubits. Building a quantum computer that could crack RSA codes out of such components would require many millions if not billions of qubits. Only tens of thousands of these would be used for computation -- so-called logical qubits; the rest would be needed for error correction, compensating for decoherence. The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum computer that can solve a problem that anybody cares about. It is akin to trying to make today's best smartphones using vacuum tubes from the early 1900s. You can put 100 tubes together and establish the principle that if you could somehow get 10 billion of them to work together in a coherent, seamless manner, you could achieve all kinds of miracles. What, however, is missing is the breakthrough of integrated circuits and CPUs leading to smartphones -- it took 60 years of very difficult engineering to go from the invention of transistors to the smartphone with no new physics involved in the process.

With computers, it was always obvious that bigger and better ones would be possible. Intermediate results could be stored in memory. With quantum computers, it is not clear that scaling up will be possible.

Monday, March 28, 2022

How Science Journalism got Politiciized

SciAm reports:
How the Pandemic Remade Science Journalism

It’s no longer possible to separate science and politics ...

It didn’t take long for bad actors to weaponize the confusion to spread misinformation. Patient zero in this “infodemic” was Donald Trump. The former president routinely downplayed the virus’s severity, calling it “no worse than the flu.” He blamed China, stoking xenophobia rather than urging people to protect themselves and others. He mocked people who wore masks, politicizing a basic public health measure, while promoting baseless COVID treatments. ...

There has perhaps been no more consequential or bitter battleground in the U.S. epidemic than vaccines. The anti-vax movement — a small faction but already a potent force before COVID — took advantage of people’s hesitancy about the speed with which the new vaccines were developed to spread lies and misinformation about their effects. ...

All of this has played out against the backdrop of vast inequities in access to vaccines and health care, both nationwide and globally. One of the biggest lessons of the pandemic for many of us has been that racism, not race, explains why COVID has been even more devastating for people of color.

The arrival of new viral variants further complicated messaging. The mRNA vaccines achieved an effectiveness beyond any expert’s wildest dreams.

Yes, science journalism has been hopelessly politicized, and it is evident from this article.

It eagerly blames Trump for saying "Wuhan virus", but fails to mention that Trump was the biggest promoter of the vaccines. The science journalists conspired to suppress vaccine info until after the Nov. 2020 election, so that Trump would not benefit.

Covid has been more deadly for colored people, but there is no evidence that racism had anything to do with it.

Tony Fauci and many others said things that turned out to be wrong, but Trump is singled out as the "bad actor".

For the vast majority of people, covid is no worse than the flu.

Scientific American had been going downhill for years, and the decline has accelerated in the last couple of years. Now it is all woke, all the time.

Another silly SciAm article:

What Quantum Mechanics Can Teach Us about Abortion

As light can exist as both a particle and a wave, an abortion provider can honor birth and fight for a person’s right to give birth when it’s right for them

It is just as stupid as it sounds.

To be woke, it has to be pro-abortion, pro-women, and recognizing that trans men can give birth. So it would not say "a woman to give birth against her will".

Attending thousands of births has been a great joy in my career and has cemented my belief that forcing a person to give birth against their will is a fundamental violation of their human rights.

Given that one quarter of women in the U.S. have an abortion, many Americans have benefitted directly or indirectly from abortion care.

This garbage is unfit for any scientific publication.

Physicist Lawrence Krauss is one the few willing to denounce the trends:

Earlier this month Science magazine, whose editor since 2019 has promoted the notion that science is systemically racist and sexist, ran four hit pieces on physics in a single issue. It was claimed that physics is racist and exclusionary, run by a “white priesthood,” and based on “white privilege.” ...

So, it is important every now and then, to step back and question the assumptions on which they are based.

(a) If the representation of various groups in scientific disciplines does not match the demographics of the society at large, the cause must be racism, sexism, or other forms of discrimination.

(b) When interviewed, white male scientists cannot provide examples of racism or sexism in their disciplines

(c) Anecdotal claims of slights based on ability, or of working in an atmosphere that seemed neither friendly nor inclusive are not in themselves evidence of anything except an atmosphere that seems neither friendly nor inclusive.

(d) It is claimed that too few programs exist to recruit and retain women and minorities.

(e) It is claimed that standard merit-based evaluations must be relaxed to increase diversity in science, and that this will strengthen the field.

A woke mob is destroying science, and hardly anyone says anything.

Another SciAm article:

In 2020, as the bodies piled up, it became clear that people of color were dying at far higher rates than white people. They had the jobs that exposed them to infections, the comorbidities that made them more likely to get very sick, and less ability to access quality health care than white Americans. The toll revealed in very stark ways that racial disparities and racism were alive and well in the U.S. At the same time, police were attacking Black people, and those attacks were being disseminated far and wide via new visual technologies. Just as COVID laid bare the racial disparities, the murder of George Floyd unfolded in front of millions of eyes in a way that made racial oppression undeniable. Not only was the structural racism in American society displayed in all its hideousness, but people were dissecting and debating it across social media in a way that had never been possible before.
Most of this is false. Access to high quality health care was killing people, as nursing homes had high infection rates, and intensive-care ventilators were deadly. The biggest comorbidity was obesity, and no one was making colored people get fat.

The George Floyd trial showed that he died of a fentanyl overdose, and no accusations of racial oppression were even presented. There was not really much debate about structural racism. SciAm published article saying it exists, but nothing debating it.

The recent Kyle Rittenhouse case, in which a vigilante who shot white people participating in largely Black protests was completely exonerated, is also alarming. ... Going forward, will they be willing to risk their lives for a cause that is not directly theirs?
Let's hope that they do not risk their lives by trying to kill and innocent boy who are only there to help. This is just an article by a Black man trying to fuel a race war. Note that is capitalizes Black but not white.

Another SciAm article:

The onus of reducing discrimination should not be on women and people of color. But in a world where inequity and bias are commonplace, having a tool to blunt these barriers may come in handy.
The tool is for women and coloreds to identify their sex and race, because the discrimination is their favor!

Here is another crazy political SciAm article:

Laws Vilifying Transgender Children and Their Families Are Abusive

Recent measures in Florida, Texas and elsewhere serve to traumatize trans children and their families, uphold ideas that trans children are inherently troubled, and go against medical advice

The new Florida law does not do any of those things, and merely bans public schools from teaching perverted sexual theories to K-3 (age 5-8) children.

Update: Another SciAm article:

Anti-trans Laws Will Have A Chilling Effect on Medicine

I am a future psychiatrist hoping to care for transgender people. But I fear these laws will make it difficult to do so

On this year’s Transgender Day of Visibility, we should be celebrating the accomplishments, honoring the resilience and advocating loudly for the rights of people who are trans. Yet the growing onslaught of anti-trans legislation targeting the health care decisions that families make with their doctors threatens to cast a shadow over this day.

About a year ago I lost a family member to the mental trauma of transgender discrimination, so I speak from a place of watching someone I love suffer from lack of support. ...

The day when police came to my house to tell my family that my uncle was found dead from an overdose after years of struggling with her identity, I felt like I was living through a nightmare.

So his uncle liked to dress as a woman, died of a drug overdose, and now he wants to give puberty-suppressing drugs to children. The article has no scientific or medical evidence of any benefit to his proposals. At best he cites surveys saying children like it better when others affirm what they are doing.

Wednesday, March 23, 2022

When were Negative Numbers Invented?

I thought that negative numbers were ancient, but have recently learned that mathematicians of a few centuries ago distrusted them.

Wikipedia says they go back to China and India a couple of millennia ago. I doubt it.

I am looking for an example of an algorithm:

1. Compute a number X that can be positive or negative.

2. Use X to compute something else, without dividing into two cases.

In doing my income taxes, I cannot find any example of IRS using such an algorithm.

I am guessing such algorithms started to appear around 1800 or so.

Wikipedia explains:

For a long time, understanding of negative numbers was delayed by the impossibility of having a negative-number amount of a physical object, for example "minus-three apples", and negative solutions to problems were considered "false".
But that is not impossible at all, as having "minus-three apples" means owing 3 apples.

Furthermore, lots of other natural measurements can be negative. I could ask "how far are you east of the landmark?" and get a negative answer. Likewise, feet below sea leval, freezing temperature, or a countdown to an anticipated event. If I ask the cost of something, and it turns out to be a benefit, then it has negative cost.

Newtonian Physics was invented around 1680. Today, textbooks explain it with force diagrams, where force vectors are added. These seems to require negative numbers, as forces can cancel out. It also seems to require vectors, but vectors were not invented until about 200 years later. It is hard to imagine that Newton did not understand negative numbers, but maybe not, if he did not understand vectors either.