Thursday, January 18, 2018

S. M. Carroll goes beyond falsifiability

Peter Woit writes:
Sean Carroll has a new paper out defending the Multiverse and attacking the naive Popperazi, entitled Beyond Falsifiability: Normal Science in a Multiverse. He also has a Beyond Falsifiability blog post here.

Much of the problem with the paper and blog post is that Carroll is arguing against a straw man, while ignoring the serious arguments about the problems with multiverse research.
Here is Carroll's argument that the multiverse is better than the Freudian-Marxist-crap that Popper was criticizing:
Popper was offering an alternative to the intuitive idea that we garner support for ideas by verifying or confirming them. In particular, he was concerned that theories such as the psychoanalysis of Freud and Adler, or Marxist historical analysis, made no definite predictions; no matter what evidence was obtained from patients or from history, one could come up with a story within the appropriate theory that seemed to fit all of the evidence. Falsifiability was meant as a corrective to the claims of such theories to scientific status.

On the face of it, the case of the multiverse seems quite different than the theories Popper was directly concerned with. There is no doubt that any particular multiverse scenario makes very definite claims about what is true. Such claims could conceivably be falsified, if we allow ourselves to count as "conceivable" observations made outside our light cone. (We can't actually make such observations in practice, but we can conceive of them.) So whatever one's stance toward the multiverse, its potential problems are of a different sort than those raised (in Popper's view) by psychoanalysis or Marxist history.

More broadly, falsifiability doesn't actually work as a solution to the demarcation problem, for reasons that have been discussed at great length by philosophers of science.
Got that? Just redefine "conceivable" to include observations that could never be done!

While Woit rejects string and multiverse theory, he is not sure about quantum computers:
I am no expert on quantum computing, but I do have quite a bit of experience with recognizing hype, and the Friedman piece appears to be well-loaded with it.
I'll give a hint here -- scientists don't need all the crazy hype if they have real results to brag about.

Monday, January 15, 2018

Gender fairness, rather than gender bias

I have quoted SciAm's John Horgan a few times, as he has some contrarian views about science and he is willing to express skepticism about big science fads. But he also has some conventional leftist blinders.

A couple of women posted a rebuttal to him on SciAm:
They found that the biggest barrier for women in STEM jobs was not sexism but their desire to form families. Overall, Ceci and Williams found that STEM careers were characterised by “gender fairness, rather than gender bias.” And, they stated, women across the sciences were more likely to receive hiring offers than men, their grants and articles were accepted at the same rate, they were cited at the same rate, and they were tenured and promoted at the same rate.

A year later, Ceci and Williams published the results of five national hiring experiments in which they sent hypothetical female and male applicants to STEM faculty members. They found that men and women faculty members from all four fields preferred female applicants 2:1 over identically qualified males.
This seems accurate to me. It is hard to find any women in academia with stories about how they have been mistreated.

Nevertheless, men get into trouble if they just say that there are personality differences between men and women. If you are a typical leftist man, you are expected to complain about sexism and the patriarchy, and defer to women on the subject.

Thursday, January 11, 2018

Intel claims 49-qubit computer

Here is news from the big Consumer Electronics Show:
Intel announced it has built a 49-qubit processor, suggesting it is on par with the quantum computing efforts at IBM and Google.

The announcement of the chip, code-named “Tangle Lake,” came during a pre-show keynote address by Intel CEO Brian Krzanich at this year’s Consumer Electronics Show (CES) in Las Vegas. “This 49-qubit chip pushes beyond our ability to simulate and is a step toward quantum supremacy, a point at which quantum computers far and away surpass the world’s best supercomputers,” said Krzanich. The chief exec went on to say that he expects quantum computing will have a profound impact in areas like material science and pharmaceuticals, among others. ...

In November 2017, IBM did announce it had constructed a 50-qubit prototype in the lab, while Google’s prediction of delivering a 49-qubit processor before the end of last year apparently did not pan out. As we’ve noted before, the mere presence of lots of qubits says little about the quality of the device. Attributes like coherence times and fault tolerance are at least as critical as size when it comes to quantum fiddling.

Details like that have not been made public for Tangle Lake, which Intel has characterized a “test chip.” Nevertheless, Intel’s ability to advance its technology so quickly seems to indicate the company will be able to compete with quantum computers being developed by Google, IBM, and a handful of quantum computing startups that have entered the space.
Until recently, the physics professors were saying that we needed 50 qubits to get quantum supremacy. Now these companies are claiming 49 qubits or barely 50 qubits, but they are not claiming quantum supremacy.

They don't really have 49 qubits. They are just saying that because it is the strongest claim that they can make, without someone calling their bluff and demanding proof of the quantum supremacy.
“In the quest to deliver a commercially viable quantum computing system, it’s anyone’s game,” said Mike Mayberry, corporate vice president and managing director of Intel Labs. “We expect it will be five to seven years before the industry gets to tackling engineering-scale problems, and it will likely require 1 million or more qubits to achieve commercial relevance.”
A million qubits? Each one has to be put in a Schrodinger cat state where it is 0 and 1 at the same time, pending an observation, and all million qubits have to be simultaneously entangled with each other.

This cannot happen in 5-7 years. This will never achieve commercial relevance.

Monday, January 8, 2018

The confidence interval fallacy

Statisticians have a concept called the p-value that is crucial to most papers in science and medicine, but is widely misunderstood. I just learned of another similarly-misunderstood concept.

Statisticians also have the confidence interval. But it does not mean what you think.

The Higgs boson has mass 125.09±0.21 GeV. You might see a statement that a 95% confidence interval for the mass is [124.88,125.30], and figure that physicists are 95% sure that the mass is within that interval. Or that 95% of the observations were within that interval.

Nope. It has some more roundabout definition. It does not directly give you confidence that the mass is within the interval.

Statistician A. Gelman recently admitted getting this wrong in his textbook, and you can learn more at The Fallacy of Placing Confidence in Confidence Intervals.

Some commenters at Gelman's blog say that the term was misnamed, and maybe should have been called "best guess interval" or something like that.

Saturday, January 6, 2018

Science perpetuating unequal social orders

A reader sends this 2017 paper on The careless use of language in quantum information:
An imperative aspect of modern science is that scientific institutions act for the benefit of a common scientific enterprise, rather than for the personal gain of individuals within them. This implies that science should not perpetuate existing or historical unequal social orders. Some scientific terminology, though, gives a very different impression. I will give two examples of terminology invented recently for the field of quantum information which use language associated with subordination, slavery, and racial segregation: 'ancilla qubit' and 'quantum supremacy'.
I first heard of this sort of objection in connection with Master/slave (technology)
Master/slave is a model of communication where one device or process has unidirectional control over one or more other devices. In some systems a master is selected from a group of eligible devices, with the other devices acting in the role of slaves.[1][2][3] ...

Appropriateness of terminology

In 2003, the County of Los Angeles in California asked that manufacturers, suppliers and contractors stop using "master" and "slave" terminology on products; the county made this request "based on the cultural diversity and sensitivity of Los Angeles County".[5][6] Following outcries about the request, the County of Los Angeles issued a statement saying that the decision was "nothing more than a request".[5] Due to the controversy,[citation needed] Global Language Monitor selected the term "master/slave" as the most politically incorrect word of 2004.[7]

In September 2016, MediaWiki deprecated instances of the term "slave" in favor of "replica".[8][9]

In December 2017, the Internet Systems Consortium, maintainers of BIND, decided to allow the words primary and secondary as a substitute for the well-known master/slave terminology. [10]
I am not even sure that people associate "white supremacy" with South Africa anymore. It appears to be becoming one of those meaningless name-calling epithets, like "nazi". Eg, if you oppose illegal immigration, you might be called a white supremacist.

Until everyone settled on "quantum supremacy", I used other terms on this blog, such as super-Turing. That is, the big goal is to make a computer that can do computations with a complexity that exceeds the capability of a Turing machine.

Meanwhile, the inventor of the quantum supremacy term has cooked a new term for the coming Google-IBM overhyped results:
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing. ...

We shouldn’t expect NISQ is to change the world by itself; instead it should be regarded as a step toward more powerful quantum technologies we’ll develop in the future. I do think that quantum computers will have transformative effects on society eventually, but these may still be decades away. We’re just not sure how long it’s going to take.
Will Google and IBM be happy claiming NISQ and admitting that quantum supremacy and transformative effects are decades away? I doubt it, but if they cannot achieve quantum supremacy, they will surely want to claim something.
A few years ago I spoke enthusiastically about quantum supremacy as an impending milestone for human civilization [20]. I suggested this term as a way to characterize computational tasks performable by quantum devices, where one could argue persuasively that no existing (or easily foreseeable) classical device could perform the same task, disregarding whether the task is useful in any other respect. I was trying to emphasize that now is a very privileged time in the coarse-grained history of technology on our planet, and I don’t regret doing so. ...

I’ve already emphasized repeatedly that it will probably be a long time before we have fault-tolerant quantum computers solving hard problems.
He sounds like Carl Sagan telling us about communication with intelligent life on other planets.

Thursday, January 4, 2018

Google promises quantum supremacy in 2018

NewScientist reports:
If all goes to plan in 2018, Google will unveil a device capable of performing calculations that no other computer on the planet can tackle. The quantum computing era is upon us.

Well, sort of. Google is set to achieve quantum supremacy, the long-awaited first demonstration of quantum computers’ ability to outperform ordinary machines at certain tasks. Regular computing bits can be in one of two states: 0 or 1. Their quantum cousins, qubits, get a performance boost by storing a mixture of both states at the same time.

Google’s planned device has just 49 qubits – hardly enough to threaten the world’s high-speed supercomputers. But the tech giant has stacked the deck heavily in its favour, choosing to attack a problem involving simulating the behaviour of random quantum objects – a significant home advantage for a quantum machine.

This task is useless. Solving it won’t build better AI, ...
Google promised quantum supremacy in 2017. Now it is 2018.

If we hear this every year for the next five years, will anyone finally agree that I am right to be skeptical?

Tuesday, January 2, 2018

Scientists censoring non-leftist views

Scott Aaronson is considering joining a group supporting a diversity of views in academia, but backed out because he believes that if someone like Donald Trump were elected, "I’d hope that American academia would speak with one voice".

Okay, he obvious does not favor a diversity of views, and does not even want representation of the electoral majority that voted for Trump.

SciAm blogger John Horgan writes:
In principle, evolutionary psychology, which seeks to understand our behavior in light of the fact that we are products of natural selection, can give us deep insights into ourselves. In practice, the field often reinforces insidious prejudices. That was the theme of my recent column “Darwin Was Sexist, and So Are Many Modern Scientists.”

The column provoked such intense pushback that I decided to write this follow-up post. ...

Political scientist Charles Murray complained that Scientific American “has been adamantly PC since before PC was a thing,” which as someone who began writing for the magazine in 1986 I take as a compliment. ...

War seems to have emerged not millions of years ago but about 12,000 years ago when our ancestors started abandoning their nomadic ways and settling down. ... War and patriarchy, in other words, are relatively recent cultural developments. ...

Proponents of biological theories of sexual inequality accuse their critics of being “blank slaters,” who deny any innate psychological tendencies between the sexes. This is a straw man. I am not a blank-slater, nor do I know any critic of evolutionary psychology who is. But I fear that biological theorizing about these tendencies, in our still-sexist world, does more harm than good. It empowers the social injustice warriors, and that is the last thing our world needs.
Our world will always be sexist. It is human nature. Only in academia can you find ppl striving for a non-sexist world.

It is odd to hear a science magazine writer complain that "biological theorizing ... does more harm than good." When we only allow certain theorizing that supports certain political views, then we get bogus theories. In this case, he only wants anti-sexism and anti-patriarchy theories.

It is amusing to read Scott's comments, where he agrees with the academic leftists 98%. But Ken Miller jumps on his for disagreeing with white genocide. That is, Scott says that a leftist professor deserves to be criticized if he advocates white genocide.